Suricata Performance White Paper
Jonathan H. Stammler

Fall 2011

Contents

3V I 2 RN 3
TEST ENVIORMENT ... cteitiitteertenerennetenetentersscerasesssssssssssnssssnsessssesassessssesassssassssssssssssssssssnssssnsssassesassessssesnssssnsessnsesnssssnsssansesansenanse 3
EXPERIMENT ... ceniiieniiteietecreenereanereesrasereaserensersssersssessssssnssssnsssssssssssssassssnsssensessnsessssessssssnssssnsssessesassesassssnssssnsessnsessnsesnssssnsssanssanne 3
TESTS RESULTS ...cuiiiiiitnittniitnnettnnerensereneresserssserssessnsesssssssssssnssssnsessssessssesassesassssnssssnsessssssnssssnssssnsesassessssesassssnsessnsesnnsssnssssnsessnsesanse 3
LI =2 N ERROR! BOOKMARK NOT DEFINED.
B Y 1SRRI 5
B Y TSP 7
TE ST A eeeeeieieteeetetetetetereeeeee e eeereeeeeeereeeeeeeeeeeeeeeaataaaaaaatateaateaeaeeeeteeeeeteeeeeeeeeeeseeeseseesesssesesssesesasssssssssssssssssssssssssssssssssssssssnsssnsssasssssssssesesssnnnnnns 9
TE ST D eeutttttututtrerererererererererererererereerreereaeeeeesaeeeeeaatasaseteseeeseeeeeeeeeeeeeeeeeeeeseseseseeeseesesssssesesssesssssssssssssssssesesnnnns 11
TE ST D e uuuuuuueierrrererererererererererererereereereereeeeeeeeeeeereeereseeeteseeeeeeeeeeeeeeeeeesesesesesesesesessssssssssesesssesasssesesssesesenens 13
CONGCLUSION...ceutitueeteneteneereseerasersnsersssersssesnssssnsssasssssssssassssssesssssssssessssssnssssnssssssssnssssnssssssessssessssesnssssnsessnsssnssssnssssnsesansesassesnssssnnes 15
APPENDIX .cuiiieiiitniiteeiiteeeirnncienserenseresseresserassesnssssnsssssssssssssassssnsessssessssessssessssssnssssnsssassssassssassssnssssnsessnsessssssnssssnssssnsesansesansesassssnnes 16
UBUNTU 11 GETTING STARTED WITH SURICATA ... itiieettttiieteeeteeettutaeeeeesrsssssieesesssesssssnseeesssessssnasesesssssssssneeesessssssssnmeeeessssssssmmeeeessssssnsnnnns 17
DEBIAN: GETTING STARTED WITH SURICATA ..evttuuuteettetttttiieteeeserersssieeesesssssssuneeeesssesssssntesesssessssmeeeesssssssssnmeesesssssssssmmeeesssssssssmmeeeessressssnnnns 21
CENTOS 6 GETTING STARTED WITH SURICATAeiitttttuuieeeeeererstsnuaeeeesesssssnnesessssssssssnaseessssssssssnaseessssssssssassessssssssssnsessssssssssnesessssssssnnneseseeees 26

FREEBSD 8 GETTING STARTED WITH SURICATA .1uuuuieeereetrutnieteeererersstiaeeessssssssssnsesesssssssssnseesessssssssnseesessssssssnsesessssssssnsmeeessssssssnsneesesssessnsnnnens 30

INTRO

Suricata is an Open Source Intrusion Detection System developed and released its first stable version in July
2010.

Suricata is a unique Intrusion Detection System (IDS) because of the features it offers. Some of these features
are multi-threading, HTP parser and CPU handling capabilities to name just a few. This experiment
demonstrates Suricata’s capability on a high-bandwidth network with different configurations under a fixed
hardware set. These tests show the effects different configurations and a growing rule set. Included in the
appendix section of this document is up-to-date Getting Started with Suricata installation guides for Ubuntu,
Debian, Centos, and FreeBSD.

Note: No personally identifiable information was collected from the network traffic during this experiment.
Only packet, memory, and CPU statistics were collected.

TEST ENVIORMENT

This experiment was tested on a network that transmitted roughly 25 mb/second line. Suricata was run on a
Debian 6 squeeze OS. The physical hardware specifications are the following: a quad core processer Intel i7
2.67 with hyper-threading, 12 gigs of ram, and an Intel Corporation 82576 Gigabit Network Connection
network interface card (NIC).

It is important to note that the quad core processor with hyper-threading enabled allows for 2 threads per core.
This means CPU utilization of 100% is really as high as 800% theoretically and while 800% can’t be fully
reached, this perspective helps give insight to how hard the CPU is working in the following CPU load and
utilization graphs.

The different configurations were run for roughly 4-7 days; each monitoring the CPU load, memory usage, and
network traffic load. The version of Suricata used was the Current Version SVN checkout in October 2011.

EXPERIMENT

The experiment consisted of 6 different tests each with a different configuration of Suricata. The first five tests
used the free emerging threats rule sets. The last test included the pro emerging rule sets. All changes were
made to Suricata’s configuration file labeled suricata.yaml. The same Suricata instance was stopped ,
reconfigured and then restarted for each test.

Data was collected from Suricata itself to provide data on actual attacks and statistics of the traffic being
analyzed. Each test also recorded the bits in/out of the network traffic Suricata was receiving as well as the CPU
load and memory usage of the machine the tests were running on.

TEST RESULTS

Test1

The first test of Suricata was the basic install and setup through the installation guide that can be found at
http://www.openinfosecfoundation.org . The rules used for this test were the free emerging threats rule sets. No
changes were made to the suricata.yaml. This test was to create a baseline of Suricata without any features or
configuration changes. The suricata.yaml configuration file has default settings have the CPU affinity was set to
‘no’ and detect_thread ratio was set at 1.5.

In figure 1.1 Suricata slowly starts using up available memory but never gets close to taking out the 1/0 buffer
or file-system cache. Comparing figure 1.2 the CPU utilization and figure 1.3 the network throughput shows
that the CPU usage is correlated with the increased amount of data traffic Suricata is inspecting. The increase
from Friday to Saturday shows the network at around 600 megabytes where the CPU utilization 300% of its
capability.

According to the Suricata’s stats.log no packets were dropped in test1.

Figure 1.1

System Memory Stats

Thu Sun
B Used ®therd Avg 6.13C Wim : E39.97 H Max 6.46 G
C 10 Butr Ram Avg 1.27 G Win : 1.24 G Max 1.34 G
EFilesysten Cache Avg 385G Min : 2.40 G Max 452G
B avail Real Mem Avg : 508,53 M Mim : 68,11 H Max 5.70 G
M Total Swap Mvg 3.72G MWin : 372G Max 3.72 G
B Total Real Men Avg 11.76 G Win : 11.76 G Max 11.76 G

http://www.openinfosecfoundation.org/�

Figure: 1.2

CPU Usage
300
250
200
150
10
50
a L
Wed Thu Fr Sat Sumn Ham Tus
W user Awg 117.66 Hin 1.28 e 298.75
B Nice Avg 58.90 Min B&7. 77T m Hax 196_59
Owait Avg 58.90 Hin BAT.77 m Max 196,59
O System vg SE.E3 Min @ 45548 m Max 196, 54
B Interrupts Avg 7536 m MWin 0.00 e 459.30 m
Figure: 1.3
Bits In/0ut (High Speed)
E 600 M
(W)
i
oapoM o | Bl
[
[E)
(=8
ﬂ 2|:||:| H S R L (mE TPl 8 B =N iR | I Pl) ——
=
Wed Thu Fri Sat Sun Men Tue
Oin Avg 229.90 M Min 110.73 £ Max BEG. 02 M
MWout Avg 11.40m Min : 0.00 Max 2. 28
Tot In 138.78 T Tot Out B.88 k. Tot 138.78 T
TEST2

TEST2 was used to see the effect of Suricata configuration by enabling Suricata’s multithreading capability.
The changes made to the Suricata.yaml file were the following: changing the detect_thread ratio from 1.5
threads to 2 threads per core.

Figure2.1 depicts the amount of real network traffic Suricata inspected during test2. The total size of data
inspected by Suricata was 184.43 terabytes and the network was saturated with over 700 mbs at one point.
Figure 2.3 and Figure 2.4 depict clearing that Suricata was able to handle this spike in network traffic with a
small increase in CPU Utilization and little to no increase in CPU load. According to the stats.log no packets
were lost during Test2.

The increase in memory and CPU utilization towards the end of test2 on Wednesday seen in figure 2.2 and 2.3
was a result of another user transferring large amounts of data from the system Suricata was running on.

Figure2.1

Node: span.gtisc
SMMP Interface Data: span0 (1 Gbhps)

Bits In/0ut (High 5peed)
- | . : : :
§ 600 M
i |
L] }
e 400 M|
w
o |
v 200 M
- }
@ 0
Tue Thu Sat Man Wed
BIn Avg : 23828 M Min 422 M Max : 739.14 M
W out vy 1.78 m Min 0.00 Max 191. 11 m
Tot In 184,43 T Tot Out 1.38 £ Tot 184 43 T
Figure 2.2
Systen Memory Stats
20 G
56
£
i G
56

— —— - . e

. - — — By Tt L et T
& T T S e T TS S Y

o
L4
B Used ther) Avg 3.0 C Win 1.0 M 11.67 G
0 10 Buff Ram Avg 1.03 6 Hin 1.48 M Max 1.26 6
B Filesystem Cache Avg © 589 6 Win 13,73 H Mo B8R G
B Avail Real Mem Avg 1.62 G Win 69,90 M Max 512G
M Total Swap Avg 3,726 HWin 2016 M 2T G
B Total Rexl lem Avg 11,7 & #in 11.78 & Max 11.78 G
figure2.3
(P Usage
T00
-]
o]
400
300
200

2

o

Tue: Wed Sun
B user g 208.89 Win @ 4398 Max 622 .80
W rice Avg : 8280 MWin ;2257 Max 134 .90
O wmin g 1 7988 Min @ 2IL36 Mmx ! 13970
O systes v 79.76 Min 21,15 Max 126,65

B Interrpis Avg : 1Z3.85m MWin - 18.43m MHax : 2M.15m

Figure2.4
CPU Statistics

Load

0P Ueilization OO

B o-10% Eii-208 O21-308 H3-408 0@ 41-50% Minimm ;| 5.4% Haxieum @ 778X
O5i-608 O61-70% O71-80% Ee1-00%8 W 90-100% Current @ 74 4% Average @ 25 8%
Losd AvErags
W1 winute Hinimm @ 0.00 Marimm @ 1,98
05 winutes Current © 1.56 Aversge @ 0.19
W15 wirutes
TEST3

Test3 was the first test to rebuild Suricata to enable the use of PF_RING capture accelerator. PF_RING would

likely be used by any IDS required analyze a large bandwidth line without packet loss. PF_RING polls packets
from the Network interface card into a ring buffer in memory and allows the Suricata to read the packets from

the ring buffer at its own speed without dropping packets and using less CPU to handle the packets.

The installation of PF_RING with Suricata can be found in the appendix section for Debian, Ubuntu, and
CentOS. The changes made to the Suricata.yaml were the same as Test2. The detect_thread_ratio was set to 2
threads. According to the Suricata’s stats.log no memcap session drops during Test3.

In Figure 3.1 the memory stats are very different from what was seen in Test2 figure 2.1. The start of test3,
Suricata quickly took over available memory at a faster rate and in totality double the memory to run Suricata
with PF_RING enabled.

Looking at the results in figure 3.2 and figure 3.3 we can see as the network traffic increased the CPU
utilization decreased. This is a result of PF_RING using memory to buffer the packets and leaving more CPU
load to other tasks. In figure 3.3 the highest amount of network traffic was between Friday and Saturday well
over 700 mbs. The average CPU load utilization was around 73%. However, the CPU load of a quad-core
system is 4.0 and the load average was well below around 2.0 CPU load. This test shows that this configure of
Suricata with PF_RING with the hardware configuration is inconclusive. This is because looking again at figure
3.1 The use of swap space is increasing in use. This configuration would have a decrease in Suricata analysis
performance with a larger load of packets per second.

Figure: 3.1

System Memory Stats

15 G
g 106
&
3G
2 Wed Thas Fri Sat Sun Man Tue
B used Drherd Avg I1.44 G MWin B49. 40 M Max 11.68 G
B 10 Buff Fam Avg 5%5.91 W Min 25,84 k Max 1.26 G
B Fitesystem Cache Avg 1B5.33 W Min 5,23 H Max B.50 G
B avail Real Mem Avg B3.55 M HMin 67.24 M Max 2.7 G
B Toral Sesp Avg 2.7l G MWin 1.51 G Hax 37206
W Taral Real Hes g I1.76 G Min 11.76 G Max 11.76 G
Figure: 3.2
CPU Statistics
3.0
2.5
| | | L | | | | A1
2.0 k g Lol I
i ’ ol U i hy Wy Uy
j ..'|5- l i i | -t LT | | ’
E 1.5 ! | | wORIN T : anly J |
- - i T | 11 | e .'|.. i
{ 1 1L | ;] | | b !
B l TII Ui U oV T ;
. 1 i | \ BA It i \ '.‘_
|]._5:; 1 "E 1N I ' I I 1I -
0.0 £
wWed Thu Fri Sat Sun Man Tus
CPU UriTization %)
B o108 Bi11-208 O21-308x E30-40x% H41-50% Minisum : 53.9% Macimum B1.6X
Osi-60% Oe1-7ox O 71-80% Hor-s0x W 91-100% Current : HaN¥ Average @ 73 5%
Load Average
Wi sinute MWimimm : 0.00 Haximum : 2. 85
O 5 winutes Current : NaH Average @ 1.18
B 15 wirutes
Fig3.3
MNode: span.gtisc
SNMP Interface Data: span0 (1 Gbps)
Bits In/0ut (High S5peed)
=
=
[=]
(]
]
. 500 M
u
(=8
il
& 0
Wed Thu Fri sat 5un Mon Tue
EH1In avg 261 .60 M Min 4.00 M Max BdB .22 M
MW out Avg 2.28m Min 0,00 M 1.36
Tot In 157.77 T Tot Out 1.38 kb Tot 157.77 T

TEST4

Test4 was another test of Suricata with PF_RING installed. The changes made to the Suricata.yaml file double
the number of threads. The detect_thread_ratio was changed from 2 threads to 4 threads.

The CPU statistics came in as expected where in test3 the CPU load was around 2.0 and in figure 4.1 of test4
the CPU utilization was upper bounds of 2.0 and over 3.0 during the test4.

In comparison of the CPU usage to figure 4.3 the network traffic was significantly less than previous tests with
56.94 terabytes. The spike towards the end of test4 in figure4.1 shows the inverse relationship of CPU load and
utilization decreasing while the network traffic increase to over 600 mbs. This was similar to the results seen in
test3 and opposite to the results seen in Testl and Test2.

Figure 4.2 shows similar results of memory usage being quickly used up. However, the swap is less affected
then in test3. The stats.log registered a memcap drop during test4. Memcap_drop in the Suricata means that
there was not enough memory to sufficiently complete an application and flow layer analysis for a number of
packets. Please note that each individual packet was individually inspected by Suricata. The results of test4
show that while the CPU load never reaches 5.0 load and as mentioned before the system can handle almost 8.0
CPU load. However, this end of this test shows evidence that the memory in this hardware configuration is not
sufficient to effectively run Suricata at a consistently higher network bandwidth rate.

Figure 4.1

CPU Statistics
5.0

4.0

'w‘l'llll'

| ‘l h\
1R I[i

0 =
12:00 18:00 00:00 O06:00 12:00 18:00 00:00 O8:00 12:00 18:00 00:00 O0&:00 12:00 18:00

Load

=N
e

CPU Utilization %)

W o-10% Ei11-z0% Ozi1-30% BE31-40% O a41-50% Mimimum : 55.1% Macimum : 83.9%

Os1-e0% Oe1-7o% O 71-g0% Os1-90% M 91-100% Current : 70.0% Average : 79.4%
Load Average

Wi minute Mirdimum : 0. 16 Maximum : 4 83

O 5 minutes Current : 2.41 Average : 2.06

M 15 minutes

Figure 4.2

System Memory 5Stats

20 G

&
12:00 18:00 00:00 O6:00 12:00 18:00 0000 O06:00 12:00 18:00 00:00 0600 12:00 1B:00
B Used (Other) Avg . 1019 G Min ; 735,79 H MHax 11.67 G
O I0 Buff Ram Avg 72.87T M Min : 1.50 H Max 12547 H
B Filesystem Cache Avg : 295.92 M Min 13.53 H Max E32.90 W
@ Avail Real Mem Avg 1.21 6 Min GE8.04 H Hax 10.87 G
B Total Swap Avg 3.436 Min 1.70 G Max 3.726G
B Total Real Mem Avg 11.76 G Min 11.76 G Hax 11.76 G
Figure 4.3

MNode: span.gtisc
SNMP Interface Data: span0 (1 Gbps)

Bits In/0ut (High Speed)

S 600 M-
L
il
400 M
|
L]
(=
w200 M
-
e

0

Tue Wed Thu Fri

BiIn avg 189 02 M Min T0.58 M Max 590,49 M
W out Avg 0.0 Min 0.0 Max 000
Tot In .94 T Tot Out .00 Tot L. 94 T

TEST5

Test5 was Suricata with PF_RING enabled with another increase in the detect_thread_ratio from 4 threads to 6
threads. Test5 shows similar results test3 and test4. Figure 5.1 shows as expected the increased load. Figure 5.2
also shows the inverse relationship of the CPU utilization and the network traffic.

In figure 5.3, it is notable after the available memory has been used up the swap space is used completely at the
end of the experiment except for .5 gigs of memory. Figure 5.4 shows that the CPU utilization at over 600% for
the duration of the test out of the theoretical total, 800%. According to the stats.log, test5 had a larger memcap
session drop rate.

The results of the test5 show that Suricata was using almost all of the hardware’s resources in terms of memory
and the majority of the CPU usage. Test5 showed that Suricata’s performance and analyzing capabilities were
reduced because of the number of threads and the use of PF_RING putting more of the network packet load on
the memory.

Figure: 5.1

Node: span.gtisc
SNMP Interface Data: span0 (1 Gbps)

Bits In/0ut (High 5peed)

=
S 600 M
LT
1
. 400 M
')
o
w200 M
-
f 0

Sat 5un Mon Tue Wed
Bin avg : 22014 M Min 4263 M Max :© TF25.37T M
MW out Avg 448 m Min .00 Max 2.29
Tet In 101.44 T Tot Out 2.06 k. Tot 101.44 T

Figure: 5.2

CPU Statistics

8.0 -

Load

sat sun Man Tue Wed
CPU UtiTization O
W o-10% E11-20% Oz21-30% 0 31-40% O 41-50% Mirnimum : 29.1% Maximum ;. 84.4%
Osi-e0x% Oei-7ox O 7i-sox Oe1-oox M 91-100% Current : 70.2% Average @ 77.7%
Load Average
M1 minute Mirdmum © 0.85 Maximum : &§.25
O s minutes Current . 4.06 Average . 3.44

W15 minutes

Figure 5.3
System Memory Stats

2006 z

15 G
g

10 G
&

506

1]

B Used ([Mther) Avg @ 10.05G Min : 2.33 6 Max 11.68 G
O I0 Buff Ram Avg : 12639 M Min ;91400 k Max 162.08 M
B Filesystem Cache Aug 631.53 M Min B.50 M Max 1.256G
[Avail Real Mem Avg SE9. 33 M Min : 67.82 H Max 919G
B Total Swap Avg 3.57G Min : 31598 M Max 372G
M Total Real Mem Avg 11.76 G MWin : 11.76 G Max 11.76 G

Figure 5.4

CPU Usage

700

600

500

400

300

200

100

0

Sat Sun Mon Tue Wed
W user Avg 622.30 Min 231.98 Max 676.61
B Hice vy 20.17 Mim 9,08 M 118,00
O wait Avg 20,17 Mim 4,08 M 114, 00
O systen Avg 19,06 Min 3.62 Max 24 67
B Interrupts Avg 12.50 m Min 631.23 u Max 2745 m

TEST6

Test6 was setup exactly as test4‘s configuration with PF_RING enabled and the detect_thread_ratio set to 4.
Test6 was to determine the effect an increase in a larger rule set from adding the pro emerging threats rule set to
Suricata to the existing free emerging threat rule sets.

Figure 6.1 shows test6 for an almost half the test used up about 3.5 gigs of total swap. This is substantially more
then what was used in test4 with the free rule set and was used faster than in test5 which had 6 threads. Figure
6.2 shows that the CPU utilization and load were around the levels found in test4 or much lower.

Figure 6.3 shows barely reached over 100 mbs until the end of the experiment. This is likely a result of
thanksgiving break. At the end of the test the CPU load climbs back up to 3.0 load which matches the average
load from test4. According to the stats.log, it took 2 days and 19 hours for Suricata to register a memcap session
drop. This means Suricata was unable to analyze packets per flow or application. Suricata was still able to
analyze the packet individually. Suricata needs more memory then available to handle Suricata and PF_RING.
The use of swap space in with the memcap session demonstrates a loss in Suricata’s analysis capabilities.

Figure6.1

Systen Mepory Stats

NG

156G
3 10 G
&

£G

o Ved T Fri sat Sun Hon Tise wed Thu

W used Dther) Avg : 11.38 G Hin 1.62 G Max 11.68 G
O 10 Bufr Faa Mg : 4518 W HMin 1.15 M Max 133.51 M
B Filesysten Cache Avg 14890 M Win 10.54 W Max 1.41 G
E avail Feal Hem Awg 177.21 M Win B9.28 M Max 8.77 6
B 1ol Swap Avg - 1.43 G Min 676.26 M Max 3726
B Total Real Mem g 11.76 G MWin 11.76 G Max 11.76 G

Figure6.2

(PU Statistics
5.0

4.0
3.0

2.0

1.0

0.0

Wad

CPU UEd1ization O

B o108 Bn-20x8 B20-30% B3-s0x B a-50x Mirdmos : §.7% Haciws @ 83.1%
Osi-e08 Oer-7ox O7-z0% @e1-00x M o1-100% Current : NaN% Average : 38.5%
Load Average
B winute Mimims 0,10 Haoiss - 482
O 5 winutes Current : HaM Averaps @ 1.66
M 15 wirunes
Figure6.3

Node: span.gtisc
SMMP Interface Data: span0 (1 Gbps)

Bits In/0ut (High Speed)

= |
5 200 M
i
u |
| .
g 1o0M
i
=

0

Wed Fri sun Tue Thu

BIn svg TS.BYT M Min 13.08 M Max 230,10 M
Mot tvg 6.49 m Min 0.00 Max 382.22 m
Tot In B6.26 T Tot Qut 482k Tot BE.26 T

Conclusion

The tests 1-6 were discussed individually and closely to see changes within each test. The following overall
results are all 6 tests compared side by side in network traffic, memory usage, and CPU utilization and usage.

Figure 7.1 shows over the length of the experiment Suricata inspected a total of 636 terabytes and the most
traffic was inspected during week46 or test3. More interesting is the comparison in figure 7.2 of memory usage.
In figure7.2 each dip in the available/file-system is the start of each test. Test3, the first test using Suricata with
PF_RING shows that 12 gigs of memory. The memory on the hardware barely meets the required amount of
memory. The swap space from test3 shows more swap space is used when more threads are created with the
Suricata engine.

Test6 or the beginning of week49, figure7.2, the pro VT rule set is being utilized with suricata. The swap space
being used is significantly more and is easy to see that to run suricata at this level. 12 gigs of memory is
inadequate for a 1gig maximum traffic network. Figure 7.3 shows that throughout the tests the CPU utilization
was around 70-90%. These tests suggest this hardware specification is sufficient for a network that operates up
to 1 gigabyte threshold network and roughly 200 mbs on average without the use of PF_RING.

The results from these tests demonstrate the Suricata can efficiency and without packet loss handle a network of
this size under the specified hardware constraints. For PF_Ring feature to be enabled with Suricata running and
run Suricata at full analysis capabilities more memory will be required. PF_Ring off loads the CPU load to
memory to create the ring of packets to be analyzed at the intrusion detection systems rate. During the last three
tests, it was show that there was some memcap drop showed those packets were still being inspected
individually. They were not dropped. The packets in the memcap drop due to memory shortage were not
analyzed per flow or application. This reduced the analyzing capabilities of Suricata.

Figure7.1

Mode: span.gtisc
SNMP Interface Data: span0 (1 Ghps)

Bits In/0ut (High Speed)
T i i
S 600 M z i L tii
[bd | W | | | | *T
] R | A | | i
. 400 M P N II II B
u | N | N | ||
=2 | . A alk ll [N ||
w200 M Il.l*.IIL.iJJHIlJIM\I‘.I ak . W |, 4
sl } L N A lL.l-..-lIlI T |
o N 1N N N (N I N I N AN N N --I.I - 1IN |
Week 44 Week 45 Week 46 Week 47 Week 48

Oin avg 200,48 M Min 1309 M Max : 74460 M
W out Avg 4898 m Min 0.00 Max 382.22 m

Tot In B36.5 T Tot Out 15.82 k. Tot 63656 T

Figure7.2

Systen Menory Stats
20 G
156 |
E 10 G
&
561
1]
Week 44 45 Week 49
B Used (Othery Avg B.26 G Min 1.30 6 Hax 11.68 G
O 10 Buf Fam ivg 537.06 H Min 1.05 0 Hax 1.34 G
B Filesystem Cache Avg 218G Min ; .59 H Hax B2 G
B hvail Feal Hem Avg © BOS.TOM Min - 69.05 M Max B.IT G
B Total Swap Avg 2.5 G Min G76. 28 N Max 3G
B Toral Real Mem Avg 11.76 G MWin : 11.76 G Hax 11.76 G
Figure7.3
CPU Statistics
5.0
4.0 |
3.0 |
2.0
1.0
L vash 44 Veek 45
U UniTizarion (%)
W oo-1ox Ei-208 B2i-308 H3-40% Ha-50x Mimimm © |.7% Hacims ;o B3.3X
Osi-e0% Oe1-7ox O 71-00% Es1-50% W 90-100% Current : MaN¥ Average @ 45.1%
Load Average
W1 winute Wirims @ 000 Haxisus @ 4,90
O 5 winutes Current © Ha Average @ 1.20

W 15 wirmtes

APPENDIX
UBUNTU 11 Getting Started with Suricata

INTRO:

This is a guide to install Suricata with PF_RING. This installation was completed using Virtualbox version
4.0.6 and Ubuntu iso 11.04.

Sections:

1. Basic Suricata installation and how to enable some features
2. PF_RING (capture accelerator) Suricata installation with features from Section 1
3. Suricata Configuration

Required Packages To Build Suricata:

sudo apt-get -y install libpcre3 libpcre3-dbg libpcre3-dev
build-essential autoconf automake libtool libpcap-dev libnetl-dev
libyaml-0-2 libyaml-dev zliblg zliblg-dev libcap-ng-dev libcap-ng0

Install Suricata as and IDS and IPS system

#sudo apt-get -y install libnetfilter-queue-dev libnetfilter-queuel libnfnetlink-dev
libnfnetlink

cd /opt

wget http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz

tar -xvfz suricata-1.0.5.tar.gz
cd suricata-1.0.5

#sudo ./configure --enable-nfqueue
#sudo make

#sudo make install

To install enable additional features of Suricata , install the following packages and append the ./configure line
as stated:

To enable HTP Library(HTML pre-processor):
#apt-get install htp

-/configure --with-libhtp-libraries
To enable libcap_ng (dropping privileges) :
#apt-get install libcap-ng-dev

-/configure --with-libcap_ng-libraries=/usr/lib

http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz�

2. PE RING installation

This installation will install PF_RING as well as enable the above features.

2.1 Download the required packages:
#apt-get install build-essential libpcre3-dev libpcap-dev libnetl-dev libyamldev

libnetfilter-queue-dev zliblg-dev htp subversion flex bison linux- headers-2.6.32-5-686
dkms libcap-ng-dev

Note This installation was done with linux-headers-3.0.0-12 and linux-headers-3.0.0-12-generic. Using linux-
headers-2.6.32-5 caused issues while building the e1000e-pf_ring module

2.2 Download PF_RING

cd /usr/src

svn --force export https://svn._ntop.org/svn/ntop/trunk/PF_RING/ PF_RING_CURRENT_SVN
mkdir Zusr/src/pf _ring-4

cp -Rf /usr/src/PF_RING_CURRENT_SVN/kernel/* /usr/src/pf_ring-4/

2.3 Configure PF_RING Driver
cd Jusr/src/pf_ring-4/

nano dkms.conf

PACKAGE_NAME="pf_ring"
PACKAGE_VERSION="4"
BUILT_MODULE_NAME[0]="pf_ring"
DEST_MODULE_LOCATION[0]="/kernel/net/pf_ring/"
AUTOINSTALL="yes"

Then press CRTL+X, Y, enter

dkms add -m pf_ring -v 4
dkms build -m pf_ring -v 4
dkms install -m pf_ring -v 4

At the end the install command you should get DKMS: INSTALL Completed
NOTE To remove the pf_ring driver, type the following command:

#sudo dkms remove —m pf_ring -v 4 --all

2.4 Configure PF_RING Aware Driver

mkdir /usr/src/el000e-pf ring-1.3.6

cp -Rf /usr/src/PF_RING_CURRENT_SVN/drivers/PF_RING _aware/intel/el000e/e1000e-
1.3.6/src/* /usr/src/el000e-pf_ring-1.3.6/

cp -F /usr/src/PF_RING_CURRENT_SVN/kernel/linux/pf_ring.h /usr/src/el000epf ring-1.3.6/
cd /usr/src/el000e-pf _ring-1.3.6/

sed -1 —e
SN NN NN NN NN\ VKkerne I/ HinuxX\N/pA_ring\.h/pf_ring\.h/" netdev.c

#nano dkms.conf

PACKAGE_NAME="e1000e-pf_ring"
PACKAGE_VERSION="1.3.6"
BUILT_MODULE_NAME[0]="e1000e"
DEST_MODULE_LOCATIONI[0]="/kernel/drivers/net/e1000e/"
AUTOINSTALL="yes"

#dkms add -m e1000e-pf _ring -v 1.3.6
2.5 Install PF_RING

#sudo cp -F Zusr/src/PF_RING_CURRENT_SVN/kernel/linux/pf _ring.h
/opt/PF_RING/include/linux/

#cd Zusr/src/PF_RING_CURRENT_SVN/userland/lib

#sudo ./configure --prefix=/opt/PF_RING/

#sudo cp -F pfring_el000e dna.h Zopt/PF_RING/include
#sudo make

#sudo make install

2.6 Install libpcap with PF_RING

cd /usr/src/PF_RING_CURRENT_SVN/userland/libpcap-1.1.1-ring

sed -1 —e "s/\.\.\/lib\/libpfring\.a/\/opt\/PF_RING\/lib\/libpfring\.a/" Makefile.in
#_/configure --prefix=/opt/PF_RING

#sudo make

#sudo make install

2.7 Install tcpdump with PF_RING

-# cd /usr/src/PF_RING_CURRENT_SVN/userland/tcpdump-4.1.1
sed -1 -e "s/\.\.\/lib\/libpfring\.a/\/opt\/PF_RING\/lib\/libpfring\.a/" Makefile.in

sed -1 -e "s/-1 \._\V/libpcap-1\.0\.O-ring/-1 \/opt\/PF_RING\/include/" Makefile.in

sed -1 -e "s/-L \._.\libpcap-1\.0\.O-ring\/-L /\/opt\/PF_RING\/1ib\//" Makefile.in

_/configure LD _RUN_PATH="/opt/PF_RING/lib:/usr/lib:/usr/local/lib"
--prefix=/opt/PF_RING/ --enable-ipv6

#sudo make

#sudo make install

3. Suricata Configuration
3.1 A The Stable version:

cd /opt

wget http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz

tar xvfz suricata-1.0.5.tar.gz

cd suricata-1.0.5

Sudo ./configure --enable-pfring --with-libpfring-libraries=/opt/PF_RING/lib
--with-1ibpfring-includes=/opt/PF_RING/include --with-
libpcaplibraries=/opt/PF_RING/1ib --with-libpcap-includes=/opt/PF_RING/include
LD_RUN_PATH="/opt/PF_RING/lib:/usr/lib:/usr/local/lib" -
prefix=/opt/PF_RING/ --enable-nfqueue --with-libcap_ng-libraries= /usr/llb —-—with-
libhtp-libraries

sudo make

sudo make install

3.1B Beta Version

cd /usr/src/PF_RING_CURRENT_SVN/userland/

sudo git clone git://phalanx.openinfosecfoundation.org/oisf.git oisfnew

cd oisfnew

sudo ./autogen.sh

sudo ./configure --enable-pfring --with-libpfring-libraries=/opt/PF_RING/lib --
with-libpfring-includes=/opt/PF_RING/include --with-libpcap-
libraries=/opt/PF_RING/lib --with-libpcap-includes=/opt/PF_RING/include

LD _RUN_PATH="/opt/PF_RING/lib:/usr/lib:/usr/local/lib" --prefix=/opt/PF_RING/ --
enable-nfqueue --with-libcap ng-libraries=/usr/lib -—with-libhtp-libraries

sudo make

sudo make install

3.2 Configure Suricata

#mkdir /etc/suricata
#mkdir /var/log/suricata

3.2A Stable Version:

#sudo cp /opt/suricata/suricata.yaml classification.conf /etc/suricata

3.2B Beta Version:

#sudo cp Zusr/src/PF_RING_CURRENT_SVN/userland/lib/oisfnew suricata.yaml
classification.config /etc/surciata

3.3 Adding Rules to Suricata

See Suricata Wiki:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule Management with Oinkmaster

3.4.Run Suricata:

#sudo /opt/PF_RING/bin/suricata -c /etc/suricata/suricata.yaml —i1 ethO

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule_Management_with_Oinkmaster�

DEBIAN: Getting Started with Suricata

INTRO:

This is a guide to install Suricata with PF_RING. This installation was completed using Virtualbox version
4.0.6 and Debian iso 6.0.3-i386.

Sections:

1. Basic Suricata installation and how to enable some features
2. PF_RING (capture accelerator) Suricata installation with features from Section 1
3. Suricata Configuration

Required Packages To Build Suricata:

sudo apt-get -y install libpcre3 libpcre3-dbg libpcre3-dev
build-essential autoconf automake libtool libpcap-dev libnetl-dev
libyaml-0-2 libyaml-dev zliblg zliblg-dev libcap-ng-dev libcap-ngO

Install Suricata as and IDS and IPS system

#sudo apt-get -y install libnetfilter-queue-dev libnetfilter-queuel libnfnetlink-dev
libnfnetlink

cd /opt

wget http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz

tar -xvfz suricata-1.0.5.tar.gz
cd suricata-1.0.5

#sudo ./configure --enable-nfqueue
#sudo make

#sudo make install

To install enable additional features of Suricata , install the following packages and append the ./configure line
as stated:

To enable HTP Library(HTML pre-processor):
#apt-get install htp

./configure —--with-libhtp-libraries
To enable libcap_ng (dropping privileges) :
#apt-get install libcap-ng-dev

-/configure --with-libcap_ng-libraries=/usr/lib

http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz�

2. PE RING installation

This installation will install PF_RING as well as enable the above features.

2.1 Download the required packages:
#apt-get install build-essential libpcre3-dev libpcap-dev libnetl-dev libyamldev

libnetfilter-queue-dev zliblg-dev htp subversion flex bison linux- headers-2.6.32-5-686
dkms libcap-ng-dev

Note This installation was done with linux-headers-3.0.0-12 and linux-headers-3.0.0-12-generic. Using linux-
headers-2.6.32-5 caused issues while building the e1000e-pf_ring module

2.2 Download PF_RING

cd /usr/src

svn --force export https://svn._ntop.org/svn/ntop/trunk/PF_RING/ PF_RING_CURRENT_SVN
mkdir Zusr/src/pf _ring-4

cp -Rf /usr/src/PF_RING_CURRENT_SVN/kernel/* /usr/src/pf_ring-4/

2.3 Configure PF_RING Driver
cd Jusr/src/pf_ring-4/

nano dkms.conf

PACKAGE_NAME="pf_ring"
PACKAGE_VERSION="4"
BUILT_MODULE_NAME[0]="pf_ring"
DEST_MODULE_LOCATION[0]="/kernel/net/pf_ring/"
AUTOINSTALL="yes"

Then press CRTL+X, Y, enter

dkms add -m pf_ring -v 4

dkms build -m pf_ring -v 4

dkms install -m pf_ring -v 4

At the end the install command you should get DKMS: INSTALL Completed
NOTE To remove the pf_ring driver, type the following command:

#sudo dkms remove —m pf_ring —-v 4 --all

2.4 Install PF_RING

#sudo cp -F /usr/src/PF_RING_CURRENT_SVN/kernel/linux/pf_ring.h
/opt/PF_RING/include/linux/

#cd /usr/src/PF_RING_CURRENT_SVN/userland/lib

#sudo ./configure --prefix=/opt/PF_RING/

#sudo cp -F pfring_el000e_dna.-h /Zopt/PF_RING/include
#sudo make

#sudo make install

3. Suricata Configuration

3.1 A The Stable version:

cd /opt

wget http://www.openinfosecfoundation.org/download/suricata-1.0.5_tar.gz

tar xvfz suricata-1.0.5.tar.gz

cd suricata-1.0.5

Sudo ./configure --enable-pfring --with-libpfring-libraries=/opt/PF_RING/Ilib
—-—with-libpfring-includes=/opt/PF_RING/include --with-
libpcaplibraries=/opt/PF_RING/1ib --with-libpcap-includes=/opt/PF_RING/include
LD _RUN_PATH="/opt/PF_RING/lib:/usr/lib:/usr/local/lib"

preflx /opt/PF_RING/ --enable-nfqueue --with-libcap ng-libraries= /usr/llb -—with-
libhtp-libraries

sudo make

sudo make install

3.1B Beta Version

cd Zusr/src/PF_RING_CURRENT_ SVN/userland/

sudo git clone git://phalanx.openinfosecfoundation.org/oisf.git oisfnew

cd oisfnew

sudo ./autogen.sh

sudo ./configure --enable-pfring --with-libpfring-libraries=/opt/PF_RING/lib --
with-lTibpfring-includes=/opt/PF_RING/include --with-libpcap-
libraries=/opt/PF_RING/lib --with-libpcap-includes=/opt/PF_RING/include

LD _RUN_PATH="/opt/PF_RING/lib:/usr/lib:/usr/local/lib" --prefix=/opt/PF _RING/ --
enable-nfqueue --with-libcap ng-libraries=/usr/lib -—with-libhtp-libraries

sudo make

sudo make install

3.2 Configure Suricata

#mkdir /etc/suricata
#mkdir /var/log/suricata

3.2A Stable Version:

#sudo cp Zopt/suricata/suricata.yaml classification.conf /etc/suricata

3.2B Beta Version:

#sudo cp Zusr/src/PF_RING_CURRENT_SVN/userland/lib/oisfnew suricata.yaml
classification.config /etc/surciata

3.3 Adding Rules to Suricata

See Suricata Wiki:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule Management with Oinkmaster
3.4.Run Suricata:

#sudo /opt/PF_RING/bin/suricata -c /etc/suricata/suricata.yaml —i1 ethO

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule_Management_with_Oinkmaster�

CENTOS 6 Getting Started with Suricata

INTRO:

This is a guide to install Suricata with PF_RING. This installation was completed using Virtualbox version
4.0.6 and CentOS 6.0-i386.

Sections:
1. Basic Suricata installation and how to enable some features

2. PF_RING (capture accelerator) Suricata installation with features from Section 1
3. Suricata Configuration

Required Packages To Build Suricata:

sudo yum -y install libpcap libpcap-devel libnet libnet-devel pcre
pcre-devel gcc gcc-c++ automake autoconf libtool make libyaml

libyaml-devel zlib zlib-devel

Install Suricata as and IDS and IPS system

Xi386

sudo rpm -Uvh
http://rules_emergingthreatspro.com/projects/emergingrepo/i386/1ibnetfilter_queue-0.0.15-
1.1386.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/i386/1ibnetfilter_queue-devel-
0.0.15-1.i1386.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/i386/1ibnfnetlink-0.0.30-
1.1386.rpm \

http://rules._emergingthreatspro.com/projects/emergingrepo/i386/1ibnfnetlink-devel-0.0.30-
1.1386.rpm

X86 64:

sudo rpm -Uvh
http://rules._emergingthreatspro.com/projects/emergingrepo/x86_64/libnetfilter_gueue-
0.0.15-1.x86_64.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/x86_64/libnetfilter_gueue-
devel-0.0.15-1.x86_64.rpm \

http://rules_emergingthreatspro.com/projects/emergingrepo/x86_64/1ibnfnetlink-0.0.30-
1.x86_64.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/x86_64/libnfnetlink-devel-
0.0.30-1.x86_64_rpm

cd /opt

wget http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz

http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz�

tar -xvfz suricata-1.0.5.tar.gz
cd suricata-1.0.5

#sudo ./configure --enable-nfqueue
#sudo make

#sudo make install

To install enable additional features of Suricata , install the following packages and append the ./configure line
as stated:

To Enable HTP Library(HTML pre-processor) feature:

#wget http://www.openinfosecfoundation.org/download/libhtp-0.2.3_tar.gz
#tar -xzvf libhtp-0.2_.3.tar.gz

#cd libhtp-0.2.3

#./configure

#make

#make install

To enable libcap_ng (dropping privileges) feature:

#wget http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.6.4._tar.gz
#tar -xzvf libcap-ng-0.6.4_tar.gz

#cd libcap-ng-0.6.4

#./configure

#make

#sudo make install

2.PF RING installation

This installation will install PF_RING as well as enable the above features.

2.1 Download the required packages:

#apt-get install build-essential libpcre3-dev libpcap-dev libnetl-dev libyamldev
libnetfilter-queue-dev zliblg-dev htp subversion flex bison kernel-devel dkms nano

Note Please you will need to download the correct kernel headers for your specific system
2.2 Download PF_RING

cd /usr/src
svn --force export https://svn.ntop.org/svn/ntop/trunk/PF_RING/ PF_RING_CURRENT_SVN
mkdir /usr/src/pf_ring-4

cp -Rf /usr/src/PF_RING_CURRENT_SVN/kernel/* /usr/src/pf _ring-4/

http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.6.4.tar.gz�

2.3 Configure PF_RING Driver

cd Jusr/src/pf_ring-4/

nano dkms.conf

PACKAGE_NAME="pf ring"
PACKAGE_VERSION="4"
BUILT_MODULE_NAME[0]="pf_ring"
DEST_MODULE_LOCATIONI[0]="/kernel/net/pf_ring/"
AUTOINSTALL="yes"

Then press CRTL+X, Y, Enter
dkms add -m pf_ring -v 4
dkms build -m pf_ring -v 4 —kernelsourcedir /usr/src/kernels/(Insert kernel header)

dkms install -m pf ring -v 4

At the end the install command you should get DKMS: INSTALL Completed
NOTE™ To remove the pf_ring driver type the following command:

#sudo dkms remove —m pf ring —-v 4 --all

2.4 Install PF_RING

#sudo cp -F Zusr/src/PF_RING_CURRENT_SVN/kernel/linux/pf_ring.h
/opt/PF_RING/include/linux/

#cd /usr/src/PF_RING_CURRENT_SVN/userland/lib

#sudo ./configure --prefix=/opt/PF_RING/

#sudo cp -F pfring_el000e dna.h Zopt/PF_RING/include
#sudo make

#sudo make install

3. Download and configure Suricata with pf_ring

3.1 A Stable version:

cd /opt

wget http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz
tar xvfz suricata-1.0.5.tar.gz

cd suricata-1.0.5

#Sudo ./configure --enable-pfring --with-libpfring-libraries=/opt/PF_RING/1ib

——with-libpfring-includes=/opt/PF_RING/include --with-
libpcaplibraries=/opt/PF_RING/lib --with-libpcap-
includes=/opt/PF_RING/include

LD_RUN_PATH="/opt/PF_RING/lib:/usr/lib:/usr/local/lib" -
prefix=/opt/PF_RING/

sudo make

sudo make install

3.2 Configure Suricata

#mkdir /etc/suricata

#mkdir /var/log/suricata

3.2A Stable Version:

#sudo cp /opt/suricata/suricata.yaml classification.conf /etc/suricata

3.3 Adding Rules to Suricata

See Suricata

Wiki:https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule _Management_with Oinkmaster
3.4.Run Suricata:

#sudo /opt/PF_RING/bin/suricata -c /etc/suricata/suricata.yaml —i ethO

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule_Management_with_Oinkmaster�

FreeBSD 8 Getting Started with Suricata

INTRO:

This is a guide to install Suricata. This installation was completed using Virtualbox version 4.0.6 and Freebsd8.

Sections:

1. Basic Suricata installation and how to enable some features
2. PF_RING (capture accelerator) Suricata installation with features from Section 1
3. Suricata Configuration

Required Packages To Build Suricata:

sudo yum -y install libpcap libpcap-devel libnet libnet-devel pcre
pcre-devel gcc gcc-c++ automake autoconf libtool make Bibyaml
libyaml-devel zlib zlib-devel

usr/ports/something/subversion

Install Suricata as and IDS and IPS system

Xi386

sudo rpm -Uvh
http://rules_emergingthreatspro.com/projects/emergingrepo/i386/1ibnetfilter_queue
-0.0.15-1.1386.rpm \

http://rules._emergingthreatspro.com/projects/emergingrepo/i386/1ibnetfilter_queue
-devel-0.0.15-1.1386.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/i386/1ibnfnetlink-
0.0.30-1.1386.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/i386/1ibnfnetlink-
devel-0.0.30-1.1386.rpm

X86_64

sudo rpm -Uvh
http://rules.emergingthreatspro.com/projects/emergingrepo/x86 _64/libnetfilter_que
ue-0.0.15-1.x86_64.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/x86_64/libnetfilter_que
ue-devel-0.0.15-1.x86_64.rpm \

http://rules.emergingthreatspro.com/projects/emergingrepo/x86_64/1ibnfnetlink-
0.0.30-1.x86_64.rpm \

http://rules._emergingthreatspro.com/projects/emergingrepo/x86_64/1ibnfnetlink-
devel-0.0.30-1.x86_64.rpm

cd /opt

wget http://www.openinfosecfoundation.org/download/suricata-1.0.5_tar.gz

tar -xvfz suricata-1.0.5.tar.gz
cd suricata-1.0.5

#sudo ./configure --enable-nfqueue
#sudo make

#sudo make install

To install enable additional features of Suricata , install the following packages and append the ./configure line
as stated:

To Enable HTP Library(HTML pre-processor) feature:

wget http://www.openinfosecfoundation.org/download/libhtp-0.2.3.tar.gz
tar -xzvf libhtp-0.2.3.tar.gz

cd libhtp-0.2.3

./configure

make

make install

To enable libcap_ng (dropping privileges) feature:

wget http

wget http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.6.4.tar.gz
tar -xzvft libcap-ng-0.6.4.tar.gz

cd libcap-ng-0.6.4

./configure

make

sudo make install

3. Download and configure Suricata with pf_ring

3. A The Stable version:
cd /opt
wget http://www.openinfosecfoundation.org/download/suricata-1.0.5_tar.gz

http://www.openinfosecfoundation.org/download/suricata-1.0.5.tar.gz�

tar xvfz suricata-1.0.5.tar.gz

cd suricata-1.0.5

Sudo ./configure --enable-pfring --with-libpfring-libraries=/opt/PF_RING/1lib
—--with-libpfring-includes=/opt/PF_RING/include --with-libpcaplibraries=/
opt/PF_RING/1ib --with-libpcap-includes=/opt/PF_RING/include

LD RUN_PATH="/opt/PF_RING/lib:/usr/lib:/usr/local/lib" --prefix=/opt/PF_RING/
sudo make

sudo make install

3.2 Configure Suricata

#mkdir /etc/suricata

#mkdir /etc/suricata/rules

#mkdir /var/log/suricata

#cp /opt/suricata/suricata yaml classification.conf /etc/suricata

3.3 Adding Rules to Suricata
See Suricata Wiki:

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule Management with Oinkmaster

3.4.Run Suricata:

#sudo /Zopt/PF_RING/bin/suricata —-c /etc/suricata/suricata.yaml —i emO

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule_Management_with_Oinkmaster�

	TEST ENVIORMENT
	APPENDIX
	UBUNTU 11 Getting Started with Suricata
	DEBIAN: Getting Started with Suricata
	CENTOS 6 Getting Started with Suricata
	FreeBSD 8 Getting Started with Suricata

